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The role of coherent and incoherent subgrid-scale modes in large-eddy simulation
modelling is examined. The coherent/incoherent decomposition of the subgrid-scale
stresses based on the wavelet de-noising procedure is introduced. A priori dynamical
tests based on the perfect modelling approach are performed for decaying isotropic
turbulence. The theoretical effects of coherent and incoherent subgrid-scale forces
are dynamically evaluated during the simulation. The relation between deterministic/
stochastic subgrid-scale models and coherent/incoherent subgrid-scale stresses is dis-
cussed. The main result is that in large-eddy simulations low-order statistics can be
almost exactly reproduced when only the effect of the coherent subgrid-scale modes
is accounted for, while the incoherent subgrid-scale modes have a negligible effect
upon the large-scale dynamics and the energy transfer.

1. Introduction
In large-eddy simulation (LES) of turbulent flow, the formal scale separation is

obtained by means of a low-pass filtering operation applied to the Navier–Stokes
equations, which leads to the definition of filtered (or large-scale) and residual (or
small-scale) fields. The filtered Navier–Stokes equations must be closed by modelling
the subgrid-scale (SGS) stresses that account for the effect of the unresolved small-
scale eddies. The nearly universal approach in LES is to use deterministic models,
where the SGS stresses are defined as a given function of the large-scale (resolved)
velocity field (e.g. Smagorinsky 1963; Bardina, Ferziger & Reynolds 1983; Germano
et al. 1991; Lesieur & Métais 1996; Meneveau & Katz 2000).

An alternative approach is to use stochastic modelling by also considering a noise
contribution to the SGS model. For instance, a stochastic force can be added to a
classical eddy viscosity term to develop improved SGS models (e.g. Chasnov 1991).
The motivation behind stochastic modelling is the recognition that the large scales
of motion are randomly forced through nonlinear interaction with small-scale eddies
resulting in stochastic backscatter of energy (e.g. Leith 1990). Stochastic models more
realistically mimic the behaviour of filtered direct numerical simulation (DNS), since
different flow realizations are observed for the same initial large-scale field. However,
the flow realizations for stochastic LES are different from the filtered DNS solution.
In fact, it is impossible to construct an LES model providing large-scale velocity
that matches the filtered DNS field realization by realization. To achieve statistical
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correspondence between the LES and DNS fields, Langford & Moser (1999) con-
sidered an optimal LES formulation, where the SGS force is characterized by a statis-
tical distribution that is modelled via a stochastic estimation technique (Adrian 1990).
It has been found that the error between the real and estimated SGS force is as large
as the SGS force itself. However, despite the large error, the optimal LES model
exactly represents the total energy transfer to the subgrid scales.

To understand the effect of deterministic versus stochastic modelling in LES one
must go back to the basic structures of turbulence. Turbulence is characterized by
energetic eddies that are localized in space and contain significant energy at all
length scales, from the characteristic length scale of the physical domain down to the
Kolmogorov length scale (e.g. Jimenez et al. 1993; Farge, Pellegrino & Schneider 2001;
Goldstein & Vasilyev 2004). Visual studies of turbulent velocity fields have shown the
presence of basic three-dimensional structures, namely vorticity tubes, often referred
to as wormlike structures, at all the scales of the flow (Vincent & Meneguzzi 1991).
Thus, when a low-pass filter is used with LES, the small-scale coherent energetic eddies
are filtered out. Therefore, the effect of these small-scale coherent energetic structures
contained in the subgrid scales, hereafter referred to as the coherent SGS modes,
must be modelled. It has been hypothesized from preliminary results in Goldstein &
Vasilyev (2004) that the coherent SGS modes have a disproportionately large effect on
the total SGS dissipation and, consequently, on the evolution of the resolved LES field.

While numerous previous publications have dealt with the role of coherent ener-
getic eddies in the context of DNS, coherent vortex simulation (CVS) (e.g. Farge,
Schneider & Kevlahan 1999) and stochastic coherent adaptive LES (SCALES) (e.g.
Goldstein & Vasilyev 2004) or with the role of ‘near-band’ SGS modes (e.g. Kraichnan
1976; Domaradzki, Liu & Brachet 1993; Domaradzki et al. 1994), the main objective
of the present work is to rigorously study the effect of the coherent/incoherent SGS
modes on the evolution of the resolved modes in the classical LES approach. The
coherent/incoherent turbulence decomposition is based on wavelet de-noising. In
particular, we adopt the simple idea, originally introduced by Farge et al. (1999), ac-
cording to which the coherent eddies correspond to the de-noised flow field, which
is very different from other known definitions (e.g. Cantwell 1981; Hussain 1986;
Lesieur 1997). The de-noising procedure is conducted through wavelet filtering, that
is performed in wavelet space by wavelet coefficient thresholding. Previous studies
have clearly demonstrated that, for a suitable thresholding level, such a filter is able
to decompose an instantaneous turbulent field into a non-Gaussian coherent part
(corresponding to the energetic coherent eddies) and an incoherent one, which is
close to Gaussian white noise (Farge et al. 1999, 2001; Goldstein & Vasilyev 2004).

The present analysis is conducted for isotropic turbulence, by means of the perfect
modelling procedure, an a priori dynamical test originally introduced by De Stefano &
Vasilyev (2002, 2004). It will be shown in this paper that in LES a small number
of coherent SGS modes, which contain the majority of the SGS energy, are also
responsible for the clear majority of the SGS dissipation, while the incoherent modes,
that account for the majority of the SGS modes, contribute a negligible amount to the
total SGS dissipation. Due to the drastically different global effects of the coherent and
incoherent SGS modes upon the large-scale dynamics, one can argue that different
SGS models can and should be adopted for the corresponding contributions to the
LES solution. Namely, deterministic models must be used to mimic the effect of the
unresolved coherent modes and stochastic models for the incoherent ones.

Note that the present study should be distinguished from earlier publications
(e.g. Kraichnan 1976; Domaradzki et al. 1993, 1994) that studied the contribution of
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‘near-band’ SGS modes, namely those not smaller than about half of the smallest
resolved scales, and concluded that the SGS dissipation results almost exclusively from
the interactions between resolved scales and ‘near-band’ modes. The main distinction
is that ‘near-band’ modes contain both coherent and incoherent SGS modes. In order
to make this distinction clear, we also explicitly compare the dynamical effect of these
‘near-band’ SGS stresses to that of the coherent SGS stresses.

The rest of the paper is organized as follows. In § 2, the entire methodology is presen-
ted. In particular, in § 2.1 some wavelet properties are discussed, while the wavelet
de-noising theory is introduced in § 2.2. The concept of coherent/incoherent decom-
position based on wavelet de-noising is briefly discussed in § 2.3 and the consistent
definition of coherent and incoherent SGS stresses is introduced in § 2.4. The perfect
modelling procedure is briefly reviewed in § 2.5. In § 3 results of numerical experiments
are presented and the role of coherent modes in SGS modelling is shown. Finally, in
§ 4 conclusions are drawn.

2. Methodology
2.1. Wavelet properties

Wavelets are basis functions which are localized in both physical (due to their finite
support) and wavenumber space. For comparison, the classical Fourier transform is
based on functions (sines and cosines) that are well-localized in frequency but do
not provide localization in physical space (due to their global support). Because of
this space/scale localization, the wavelet transform provides both spatial and scale
(frequency) information, while the Fourier transform on the other hand only provides
frequency information.

A field u(x) can be represented in terms of wavelet basis functions as

u(x) =
∑

l∈L0

c0
l φ

0
l (x) +

+∞∑

j=0

∑

µ

∑

k∈Kµ,j

d
µ,j

k ψ
µ,j

k (x), (2.1)

where φ0
k(x) and ψ

µ,j

l are n-dimensional scaling functions and wavelets of different
families (µ) and levels of resolution (j ), respectively (e.g. Vasilyev 2003). Scaling
function coefficients represent the averaged values of the field, while the wavelet
coefficients represent the details of the field at different scales. The wavelet functions
have a zero mean, while the scaling functions do not.

Traditionally, wavelets ψ
j
k are constructed by the discrete (typically dyadic) dilation

and translation of a single mother wavelet ψ(x), i.e. ψj
k (x) = ψ(2j x − k). This results in

the construction of the first-generation wavelets (e.g. Daubechies 1988) that are defined
either in infinite or periodic domains. The second-generation wavelets (Sweldens
1998) are a generalization of first-generation wavelets that supplies the necessary
freedom to deal with complex geometries, arbitrary boundary conditions, and irregular
sampling intervals. Second-generation wavelets form a Reisz basis for L2 space, with
the wavelets often having many vanishing polynomial moments, but without the
translation and dilation invariance of their first-generation cousins. Despite the loss
of this fundamental property of wavelet bases, second-generation wavelets retain
many of the useful features of first-generation ones, including a fast O(N ) transform.
The construction of second-generation wavelets is based on the lifting scheme that is
discussed in detail by Sweldens (1998).

For this study we use a set of second-generation wavelets known in the litera-
ture as lifted interpolating wavelets. For a deeper discussion on the construction of
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second-generation wavelets the reader is referred to the paper by Sweldens (1998).
For a more general discussion on wavelets we refer to the book by Mallat (1999).

2.2. Wavelet de-noising

The wavelet de-noising procedure, also called wavelet shrinkage, was originally intro-
duced by Donoho (1994). It can be briefly described as follows: given a function that
is the superposition of a smooth function and noise, one performs a forward wavelet
transform, and sets to zero the ‘noisy’ wavelet coefficients if the square of the wavelet
coefficient is less than the noise variance. This procedure, known as hard or linear
thresholding, is optimal for de-noising signals in the presence of Gaussian white
noise, since wavelet-based estimators minimize the maximal L2-error for functions
with inhomogeneous regularity.

The wavelet de-noising procedure can be formally written by taking wavelet decom-
position (2.1) and setting to zero wavelet coefficients that are below a given threshold,
ε. This procedure results in the following de-noised field:

u>(x) =
∑

l∈L0

c0
l φ

0
l (x) +

+∞∑

j=0

∑

µ

∑

k∈Kµ,j

|dµ,j

k |>ε

d
µ,j

k ψ
µ,j

k (x). (2.2)

It is worth stressing that the wavelet thresholding filter is a nonlinear filter that
depends on each flow realization.

2.3. Coherent/incoherent decomposition

It has been demonstrated previously (Farge et al. 1999, 2001; Goldstein & Vasilyev
2004) that when a wavelet thresholding filter is applied to an isotropic turbulence
velocity or vorticity field, by using the correct thresholding level ε, the turbulent field
is decomposed into coherent (organized), u>, and incoherent (nearly Gaussian white
noise), u<, fields:

u = u> + u<. (2.3)

Then, by construction, the coherent field can be defined as the wavelet-filtered field as
it contains the coherent energetic structures that were not removed by the wavelet fil-
tering (or de-noising) operation. Wavelet compression will be defined as (N − N>)/N ,
where N is the total number of wavelet coefficients and N> is the number of retained
wavelet coefficients after wavelet thresholding. In this work we are interested in the
coherent and incoherent modes in the SGS velocity field and how they interact with the
LES solution. Note that the wavelet filtering operation does not conserve divergence.
For incompressible flow, in order to ensure that the wavelet-filtered (coherent) field is
divergence-free, an additional divergence-free projection operation is performed after
the wavelet filtering operation.

2.4. SGS stresses decomposition

Consider the filtered incompressible Navier–Stokes equations,

∂uj

∂t
+

∂ujuk

∂xk

= − 1

ρ

∂p

∂xj

+ ν
∂2uj

∂xk∂xk

− ∂τ jk

∂xk

, (2.4)

where filtered quantities are denoted with a bar. Here, owing to the adoption of a
pseudo-spectral method for the numerical experiments, a sharp cutoff filter is assumed.
This way, the separation between resolved and unresolved scales is unambiguous and
the small-scale field, u′

j ≡ uj − uj , does not contain resolved wavenumber components.
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In (2.4) the SGS stresses are defined as

τ jk = ujuk − ujuk (2.5)

or, equivalently, in terms of the small-scale field, τ jk = uju
′
k + u′

juk + u′
ju

′
k . Once the

SGS field has been decomposed into coherent u′
j> and incoherent u′

j< parts, u′
j = u′

j> +
u′

j<, the SGS stresses can be consistently split. In fact, the effect of SGS coherent
modes is due to large-scale/coherent SGS as well as to coherent/coherent SGS
interaction and is taken into account by the following stresses, hereafter referred to
as coherent SGS stresses:

τ
(coh)
jk = uju

′
k> + u′

j>uk + u′
j>u′

k>. (2.6)

Note that, despite the name, these stresses do not correspond to wavelet-filtered SGS
stresses, τ jk>

.
Analogously, the effect of large-scale/incoherent SGS, coherent/incoherent and in-

coherent/incoherent subgrid-scale interactions is taken into account by the incoherent
SGS stresses,

τ
(inc)
jk = uju

′
k< + u′

j<uk + u′
j>u′

k< + u′
j<u′

k> + u′
j<u′

k<. (2.7)

This way, the SGS stresses split according to

τ jk = τ
(coh)
jk + τ

(inc)
jk (2.8)

and the same decomposition holds for the SGS dissipation, εSGS ≡ −〈τ jkSjk〉, where
the Sjk are the components of the large-scale velocity strain-rate tensor and 〈·〉
denotes ensemble averaging. In fact, the separate contributions from coherent and
incoherent SGS fields can be defined as coherent SGS dissipation, ε

(coh)
SGS ≡ −〈τ (coh)

jk Sjk〉,
and incoherent SGS dissipation, ε

(inc)
SGS ≡ −〈τ (inc)

jk Sjk〉.
In a real LES the SGS stresses are unknown quantities, which must be somehow

modelled in terms of the resolved field. In this analysis, the effect of coherent and
incoherent SGS stresses is considered using the perfect modelling approach, which is
briefly discussed next.

2.5. Perfect modelling approach

In order to avoid misunderstanding, it is first stressed that the perfect modelling pro-
cedure is not an SGS model. It consists of supplying LES with the ideal SGS stresses
evaluated by definition from the reference DNS solution (De Stefano & Vasilyev 2004).
Namely, by conducting a preliminary spectral DNS, a wavelet filter is applied to the
DNS velocity field to decompose it into energetic coherent modes and incoherent
background noise, according to the de-noising procedure discussed in § 2.2. Also, a
sharp cutoff filter corresponding to the LES grid is applied to both coherent and in-
coherent fields to separate large- from small-scale motions. The procedure is repeated
at each time step so that both the coherent and incoherent SGS stresses are evaluated
using (2.6) and (2.7) and the SGS forces are stored on the space–time LES grid. Note
that, when applying the wavelet filter, given the desired compression, the effective
threshold ε should change in time with the solution. However, it has been verified that
it does not vary much and, thus, it has been kept constant in the following experiments.

The study is conducted by performing three different simulations, namely LES
supplied with: only the perfect coherent stresses (denoted C – LES), only the perfect
incoherent stresses (I – LES), and the perfect total stresses (T – LES). In order to
make a comparison with known results from a priori studies on local/distant SGS
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Figure 1. Percent fraction of ‘coherent’ (�) and ‘incoherent’ (�) SGS dissipation together
with the compression (�) versus the wavelet thresholding level for LES with κc = 16.

interactions, an additional LES supplied with the SGS stresses from the ‘near-band’
modes, namely those for which κc < κ < 2κc, has been performed (B – LES), where κc

is the LES cutoff wavenumber.

3. Numerical experiments
3.1. Simulation settings

Decaying isotropic turbulence is considered as the flow model for the numerical experi-
ments. The initial Reynolds number of the flow is fixed at a moderate value, i.e. Reλ =
72, λ being the Taylor microscale. The same classical pseudo-spectral code with full
de-aliasing is used for both the reference DNS and the LES solutions. The DNS is
performed on a 1283 grid (a 1923 grid is used for full de-aliasing of nonlinear terms
according the 3/2 rule). The time integration step is set at about 10−3 times the initial
eddy-turnover time. The initial conditions are obtained by random forcing of the
flow field using the scheme proposed by Eswaran & Pope (1988), until an equilibrium
stationary state has been reached and the inertial range has developed to some extent.
The time integration is stopped after 103 time steps, i.e. when the energy content of the
flow has become almost half the initial value. Two different LES grids are considered,
163 and 323 with the cutoff wavenumber adopted for large/small-scale decomposition
being fixed at κc = 8 and 16, respectively.

As far as wavelet filtering is concerned, the choice of the wavelet thresholding level
ε is crucial. Figure 1 shows the compression and the percent fraction of the SGS
dissipation due to ‘coherent’ and ‘incoherent’ SGS stresses, as a function of ε, for
the initial velocity field (323 LES case). Note that we used the terms ‘coherent’ and
‘incoherent’ in inverted commas to emphasize that, for varying thresholding level, it
is better to think about SGS dissipation induced by wavelet-filtered and residual SGS
modes instead. Also note that for a given turbulent velocity field there is an optimal
value of ε for which the wavelet filter decomposes the velocity field into a filtered
field that contains all the coherent vortices of significant energy and a residual field
that is as close to Gaussian white noise as possible (Goldstein & Vasilyev 2004). This
optimal value minimizes the L∞-error between the probability density function (PDF)
of the residual field and a Gaussian PDF with the same mean and variance. Another
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Figure 2. Energy spectra for full ( ), coherent ( ) and incoherent ( ) DNS fields.
The ideal slopes −5/3 ( ) for the inertial range and 2 ( ) for energy equipartition
are also shown.

–50000 0 50000

10–8

10–6

10–4

Figure 3. PDF of ‘coherent’ ( ), ‘incoherent’ ( ) and total (�) SGS
dissipation for the initial field.

way to define the optimal wavelet coefficients thresholding level is to base it on the
SGS dissipation. As the SGS dissipation does not have a minimum (see figure 1),
an additional constraint must be added in order to maximize the field compression
at the same time. Based on this combined criterion the optimal wavelet threshold can
be defined, resulting in ε =1.5 × 10−2 for the case considered, that is a time-average
field compression of 94%. It has been verified that the residual incoherent field
corresponds to a nearly Gaussian white noise. In fact, as illustrated in figure 2, the
shell energy spectrum for the incoherent DNS velocity has a κ2-slope in the inertial
range, that corresponds to energy equipartition in wavenumber space.

Finally, it is worth stressing that in our simulations significant backscatter is present
from both coherent and incoherent SGS modes. This issue is clarified in figure 3,
where the PDF of coherent, incoherent and total SGS dissipation is reported. The
coherent SGS dissipation has almost the same PDF as the full one showing a positive
mean, corresponding to a net energy transfer from large to small scales. On the
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Figure 4. Energy decay for C – LES (�), I – LES (�), and B – LES (�) compared to
truncated DNS ( ) and no-modelled solutions ( ) with (a) κc = 8 and (b) 16.

contrary, the PDF of the incoherent SGS dissipation is characterized by a nearly zero
mean and a significantly lower variance. Note that, while the incoherent background
noise does not contribute globally to the SGS dissipation, the incoherent SGS modes
cause local bi-directional energy transfer with the resolved modes, as it clearly appears
from the figure.

3.2. Numerical results

Energy evolution in time for the C – LES and I – LES solutions are shown in figure 4,
for both LES grids. For comparison, the truncated DNS and the no-model LES
solutions are also reported. The data are normalized with respect to the initial energy
associated with the DNS solution truncated at κc = 16. It turns out that when supply-
ing the simulation with the coherent SGS force, one obtains very good results for the
energy decay (the same holds for the temporal evolution of the viscous dissipation,
not reported). On the contrary, supplying the incoherent modes gives no practical
contribution to the model since the I – LES solution practically coincides with the
no-model one. As a trivial but necessary check, it has been verified that T – LES
provides results that are indistinguishable from the filtered DNS solution. The same
good behaviour of C – LES is obtained for the spectral energy distribution. For
instance, energy density spectra for both grids after 103 time steps are illustrated in
figure 5. By supplying only the incoherent SGS modes, the solution shows the same
energy pile-up characteristic of the no-model solution.

Figure 6 shows the time evolution for the SGS dissipation, εSGS, for C – LES, I – LES
and T – LES solutions. The SGS dissipation is normalized with respect to the initial
viscous dissipation corresponding to the truncated DNS at κc =16. It is evident how
few coherent SGS modes are responsible for the right subgrid-scale energy transfer.
For the coarser LES grid, trivially the SGS dissipation is more important, while the
agreement between C – LES and T – LES is almost perfect. The picture is even
clearer when looking at the different contributions to the SGS dissipation, ε

(coh)
SGS and

ε
(inc)
SGS , for the T – LES solution, plotted in figure 7. The SGS dissipation mostly comes

from the coherent component, with the effect of the incoherent subgrid scales being
essentially non-dissipative. In fact, a very large fraction of the SGS dissipation results
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Figure 5. Energy spectra for C – LES (�), I – LES (�) and B – LES (�), compared to
truncated DNS ( ) and no-modelled solutions ( ) with (a) κc = 8 and (b) 16.
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Figure 6. SGS dissipation for C – LES (�), I – LES ( ), B – LES (�) and T – LES
( ) solutions with (a) κc = 8 and (b) 16.

from the 6% (on average) of the SGS modes that are coherent. For the smaller cutoff,
coherent and total SGS dissipation are practically indistinguishable.

Note that the coherent modes must be distinguished from the ‘near-band’ SGS
modes (Kraichnan 1976; Domaradzki et al. 1993, 1994), even though both coherent
and ‘near-band’ modes contain most of the SGS energy and dominate the SGS energy
transfer. In order to clearly show the distinction between these two types of modes, the
dynamic tests using perfect modelling approach were conducted for LES supplied with
the SGS stresses from ‘near-band’ modes. These results, denoted as B – LES, are also
shown in figures 4–6. These figures confirm previous findings from static studies that
the SGS dissipation results almost exclusively from the interactions between resolved
scales and ‘near-band’ SGS modes. However, the fact that most of the energy in the
SGS field is concentrated in the ‘near-band’ modes is simply a reflection of the rapid
decay in the energy spectrum. Furthermore, only 3% of these ‘near-band’ modes are
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Figure 7. Coherent (�) and incoherent ( ) SGS dissipation, compared to the total one
( ), for T – LES solution with (a) κc =8 and (b) 16.
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Figure 8. Skewness of a velocity component derivative for C – LES (�), I – LES ( ),
B – LES (�) and T – LES ( ) solutions with (a) κc = 8 and (b) 16.

coherent. In fact, additional LES simulations supplied with the SGS stresses only
from coherent ‘near-band’ modes produce virtually indistinguishable results when
compared to B – LES simulations. For the clarity of figures the results of these
simulations are not shown. Thus, 97% of the incoherent ‘near-band’ modes have
practically no effect on the energy transfer mechanism. This fact was overlooked by
previous investigators, mostly due to the absence of a robust and efficient tool that is
capable of decomposing the field into coherent and incoherent contributions. In order
to see the difference between the effects of coherent and ‘near-band’ SGS modes, one
must look at higher-order statistics. The clear differences for SGS dissipation and
skewness of a velocity component derivative are observed in figure 6 and figure 8,
respectively. The differences for κc = 16 are less pronounced, owing to the moderate
Reynolds number and closeness of the cutoff wavenumber to the end of the inertial
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range. It is expected that these differences would be more pronounced for higher
Reynolds number flows.

4. Conclusions
The present study deals with the effect of the coherent and incoherent subgrid-scale

modes in the classical LES approach. The coherent/incoherent decomposition of the
SGS modes is defined using a wavelet thresholding filter, while the LES filtering,
that separates the resolved LES modes from the SGS modes, is based on spectral
cutoff filtering inherent in the adoption of a pseudo-spectral method for the LES
simulations performed. It must be noted that this is very different from adopting the
wavelet filter to separate resolved from unresolved modes, as in alternative recent
approaches, such as CVS (Farge et al. 2001) or SCALES (Goldstein & Vasilyev 2004).

By exploiting the perfect modelling approach, it has been demonstrated that
modelling incoherent SGS modes has a negligible effect upon the large-scale dynamics.
Supplying pure coherent SGS stresses seems sufficient to provide results very close to
cutoff-filtered (truncated) DNS data. In fact, the low-order statistics have been shown
to be relatively insensitive to the effect of the incoherent SGS modes.

The strong message provided by this study is that the effect of the coherent SGS
modes needs to be modelled, while modelling the incoherent stochastic component
is not very important in terms of reproducing low-order statistics. This fact partially
explains why deterministic SGS models work in LES, since they reproduce the effect
of the coherent SGS modes on the resolved scales. The lack of success in showing
significant statistical correlation in a priori tests may then be attributed to the do-
minant role of the incoherent SGS modes in any stochastic estimation.

However, further investigations are needed to assess the influence of coherent/
incoherent SGS modelling on higher-order statistics. Additional tests are needed to
confirm the conclusions for high Reynolds number turbulent flows. However, we
believe that the conclusions drawn in this paper would hold even for high-Re turbulent
flows, since for higher Reynolds number an even smaller percentage of coherent SGS
modes is responsible for most of the global energy flux from the smallest resolved
eddies to the largest unresolved ones.

This work was supported by the National Science Foundation (NSF) under grants
No. EAR-0242591, EAR-0327269 and ACI-0242457.

REFERENCES

Adrian, R. 1990 Stochastic estimation of sub-grid scale motions. Appl. Mech. Rev. 43, 214–218.

Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1983 Improved turbulence models based on large
eddy simulation of homogeneous incompressible turbulence. Rep. TF-19. Thermosciences
Div., Dept. of Mech. Engng, Stanford University.

Cantwell, B. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13, 457–515.

Chasnov, J. R. 1991 Simulation of the Kolmogorov inertial subrange using an improved subgrid
model. Phys. Fluids A 3, 188–200.

Daubechies, I. 1988 Orthonormal bases of compactly supported wavelets. Commun. Pure Appl.
Maths 41, 909–996.

De Stefano, G. & Vasilyev, O. V. 2002 Sharp cutoff versus smooth filtering in large eddy simulation.
Phys. Fluids 14, 362–369.

De Stefano, G. & Vasilyev, O. V. 2004 Perfect “modelling” framework for dynamic SGS model
testing in large eddy simulation. Theor. Comput. Fluid Dyn. 18, 27–41.



274 G. De Stefano, D. E. Goldstein and O. V. Vasilyev

Domaradzki, J. A., Liu, W. & Brachet, M. E. 1993 An analysis of subgrid-scale interactions in
numerically simulated isotropic turbulence. Phys. Fluids A 5, 1747–1759.

Domaradzki, J. A., Liu, W., Hartel, C. & Kleiser, L. 1994 Energy transfer in numerically
simulated wall-bounded turbulent flow. Phys. Fluids 6, 1583–1599.

Donoho, D. L. 1994 De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627.

Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of
turbulence. Comput. Fluids 16, 257.

Farge, M., Pellegrino, G. & Schneider, K. 2001 Coherent vortex extraction in 3D turbulent flows
using orthogonal wavelets. Phys. Rev. Lett. 87, 054501.

Farge, M., Schneider, K. & Kevlahan, N. 1999 Non-Gaussianity and coherent vortex simulation
for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11,
2187–2201.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A 3, 1760–1765.

Goldstein, D. A. & Vasilyev, O. V. 2004 Stochastic coherent adaptive large eddy simulation
method. Phys. Fluids 16, 2497–2513.

Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303–356.

Jimenez, J., Wray, A., Saffman, P. & Rogallo, R. 1993 The structure of intense vorticity in isotropic
turbulence. J. Fluid Mech. 225, 65–90.

Kraichnan, R. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536.

Langford, J. & Moser, R. D. 1999 Optimal LES formulations for isotropic turbulence. J. Fluid
Mech. 398, 321–346.

Leith, C. E. 1990 Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys.
Fluids A 2, 297–299.

Lesieur, M. 1997 Turbulence in Fluids . Kluwer.
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